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COMMENT 
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People's Republic of China 
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Abslract. The Darboux and Backlund transformations for the derivative nonlinear 
Schrodinger equation are derived by the same method far the nonlinear Schrcdinger 
equation. 

Darboux transformation is a simple and powerful method for generating solutions to 
iniegrabie noniinear equaiions and has been investigated by many authors Li-51. i n  
[l] the equivalence between the 'adding' one-soliton Darboux transformation and the 
dressing method was proven and it was shown how the Darboux matrices (DM)  are 
determined by projection matrices (PM). In  [ 5 ] ,  we presented a simple method for 
constructing the DM of the nonlinear Schrodinger equation in which the PM can be 
determined by simply solving differential equations resulting from the Lax equations. 
,'U, L l l C  D d & F  U1 C Y I I I C I I I ~ I I C G ,  wci CdLl L, L l l r  r M  l l l C L l l V U  111 U15 ,urruw,,rg. 111 n lrcrlll 

paper [6], in order to obtain the soliton solutions of the derivative nonlinear Schrodinger 
(DNLS) equation, the PM method is modified by Huang and Chen because the differential 
equations for the DM are hard to solve in this case. In this comment, we shall show 
that the PM method can still apply to the DNLS equation. 

E.... .Le ^^I.^ ^P ....Le-- ... ̂ ^",, :* *I-.. -*&Le> :.. rL^ '-->I :-- r- " -.-.-. 

The DNLS equation is 

iu,+ u,,+i(lul'u), = o  (1) 

FAO = L(C).YC) ( 2 a )  

F,(C) = M ( C ) F ( C )  (26) 

~ ( 5 )  = -iC-2u3+ U ( 3 a )  

M(C)  = - 2 i ~ - 4 u 3 + 2 ~ - ' U - i ~ - ' ~ 2 a , - ~ - ' ( i ~ ~ u 3 -  U')  ( 3 b )  

whose Lax equations are [6] 

..,hn-n 
W U b I L  

and the overbar denotes the complex conjugate. 

do  this, we define a one-parameter transformation for (2) 
We first use the PM method to find the one-soliton DM of the DNLS equation. To 

e(<)= T(C)C-I(C) ( 5 )  
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where the subscript j of F,(C) denotes the solution of (2) with j parameters. The 
derivation of the explicit form of 7;(i) is exactly the same as that of the NLS equation 
[5] and the result is 

[ . -& 

i - i j  
7;(1)= I+-P,(G) (6) 

where i, is parameter and P, is a projection matrix ( P j  = 4,  PT = P,) which is deter- 
mined by c-l: 

P,(<;)= W'/V'V (7)  

V r = ( b , ,  l)Fj-,(&.) ( 8 )  

where the dagger denotes the Hermitian conjugate and b, is an arbitrary constant. For 
the NLS equation, the one-parameter transformation is just its one-soliton DM [SI. 
However, as each soliton of the DNLS equation is determined by two parameters [6,7], 
we need a two-parameter transformation which is defined as 

F,+,K) = q.+l(i)F,-Iu) (9) 

D;+t(i)= 7;+,(4')T,(i). (10) 

8+dlj+d = 7 ; ( & . + ~ ) P , ( ~ + ~ ) ~ ~ ( & , + ~ ) / t r [ 7 ; ( ~ + ~ ) P , ( i j + , ) ~ ~ ( ~ + ~ ) l .  ( 1 1 )  

D,+,([) = I  +-' B , +  I+'  B2 (12) 

From (7),  it is easy to prove that 

Using ( l l ) ,  D;+l(() can be expressed as in terms of P, 
{.-&. i. -&+, 
i - i; i-5;+, 

-"+I P,(ij+,)) P,(Lj)/N (13) 

(14) 

5, - i;+, - - 
( ~ ; F G ) ( ~ ~ + I - G + I )  tr[p,(t,)P,(i, ) I ,  
(i;-&+dG -L+,)  N = I +  , I J 1+1 

B2 can be obtained by the interchange of &+, and i; in B , .  

transformation with ti+, = -Liz 
The one-soliton DM of the DNLS equation is the special case of the two-parameter 

e(-&) = M ( L ; ) U 3  8, = u,B,u3. (15) 

These conditions come from the following properties of L ( i )  and M ( 5 )  [6]: 

L(-i) = U A i ) U 3  M ( - 5 )  = u ~ M ( O U ~ .  (16) 

For the DNLS equation, it is better to relabel the one-soliton DM as 

Ffi(i)= DH(i)FH-1(1) (17)  

(18) 
I" - I;, O n ( [ ) =  I + -  B, -~ 
l - i" i + L  

(19) 

(20) 

5, - l" u3 B,u3 

(i" - C"), 
( 5 ,  + 5" 1 N = I -  - , t r[Pw(in)Pn(-5m)l 
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where the subscript n denotes the n-soliton solution: 

(21) 
FAC) = F,+m F"-,( l )  = 6 -m DH(i)=Dj+, ( l )  
L = i j  P.(L") = P , ( C j )  E.  = B, . 

Since P , ( h )  can be written as 

where 

we have 

(22) 

(23) 

Equation (24) is the same as that given by the modified method [6] .  It must be pointed 
out that (12) is also the two-parameter transformation matrix of the NLS equation and 
in this context it is nothing but the two-soliton DM [8]. Thus the NLS and DNLS equations 
can be treated in a unified way. 

Finally, we derive a Backlund transformation for the DNLS equation. Substituting 
(17) into (2), we find 

D " x ( i )  = L.(C)D"(C)-D"(~)L"-,(5) .  (25) 
Using (18) and setting 6 =in,  e= -L and 5 = L,  respectively, (25) gives 

= L ( C n ) &  - B J - i ( L n  1 (26)  

n35d73 = L. (-L b 3 5 " U 3  - C 3 5 " , 7 3 L  - I (-& 1 

Eliminating 5, from the three equations above, we get 

(29) U. = D,,(O)U,-,DL(O) -2i 7 [ u 3 ,  5. - f B,]DA(O). 1. 
The matrix elements of (29) give 

Equation (29) or (30) i s  the Backlund transformation for the DNLS equation. 
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